

Time
(s)

(s)

$$
\text { Displacement (} \mathrm{m} \text {) }
$$

(s)

Time

Modeling a Runner as a Particle under Constant Velocity：

Example

A coach starts the stopwatch at the moment a runner passes point A ．The runner moves along a straight line at a constant rate towards point B which is located 20 m away from point A ．The time interval indicated on the stopwatch is $4 s$ ．
（a）What is the runner velocity？
（b）If the runner continues his motion after the stopwatch is stopped，what is his position after $10 s$ has passed？

Iヨ：टロ：ロロ

$v_{x}=$ const
$A _\Delta x=20 \mathrm{~m} \longrightarrow \mathrm{~B}$

Modeling a Runner as a Particle under Constant Velocity:

Example

A coach starts the stopwatch at the moment a runner passes point A. The runner moves along a straight line at a constant rate towards point B which is located 20 m away from point A. The time interval indicated on the stopwatch is $4 s$.
(a)What is the runner velocity?
(b) If the runner continues his motion after the stopwatch is stopped, what is his position after $10 s$ has passed?

Modeling a Runner as a Particle under Constant Velocity:

Example

A coach starts the stopwatch at the moment a runner passes point A. The runner moves along a straight line at a constant rate towards point B which is located 20 m away from point A. The time interval indicated on the stopwatch is $4 s$.
(a)What is the runner velocity?
(b) If the runner continues his motion after the stopwatch is stopped, what is his position after $10 s$ has passed?

$$
v_{x}=\text { const }
$$

Solution:

(a) Since the velocity of the runner (particle) is constant (particle runs at a constant rate), its velocity at any instant during the interval is the same as the average velocity over this interval (i.e. $v_{x}=v_{\text {avg. }}$.)

$$
v_{x}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}=\frac{20 m-0}{4 s}=5 m / s \quad \text { due east (towards +ve } x \text {-axis) }
$$

Note: In this problem where the direction of the particle is clearly indicated, the magnitude of the velocity may be referred to as speed.
(b) If the runner continues his motion after the stopwatch is stopped, what is his position after $10 s$ has passed?

$t_{i}=0$

$x_{i}=0$
$v_{x}=5 \mathrm{~m} / \mathrm{s}$
। ヨ: ロ
$t_{f}=t=10 \mathrm{~s}$

Solution:

(b) Since the velocity of the runner (particle) is constant (particle runs at a constant rate), the previous equation can be used by writing $\Delta t=t-0$, where $t_{f}=t=10 \mathrm{~s}$ and $t_{i}=0$, and the equation can be rewritten as:

$$
\begin{aligned}
& x_{f}-x_{i}=v_{x}^{t} \\
& x_{f}-0=(5)(10)
\end{aligned}
$$

$$
\Rightarrow x_{f}=50 m \quad \text { towards }+v e x \text {-axis }
$$

